Search results
Results from the WOW.Com Content Network
An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...
In petrology and geochemistry, an incompatible element is one that is unsuitable in size and/or charge to the cation sites of the minerals in which it is included. It is defined by a partition coefficient between rock-forming minerals and melt being much smaller than 1.
Adding the grey line would make b<c without requiring any other changes. Conversely, c , b is not a critical pair, since d < c , but not d < b . In order theory , a discipline within mathematics, a critical pair is a pair of elements in a partially ordered set that are incomparable but that could be made comparable without requiring any other ...
In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...
In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable.. The size of the largest antichain in a partially ordered set is known as its width.
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Base.See continuous poset.; Binary relation.A binary relation over two sets is a subset of their Cartesian product.; Boolean algebra.A Boolean algebra is a distributive lattice with least element 0 and greatest element 1, in which every element x has a complement ¬x, such that x ∧ ¬x = 0 and x ∨ ¬x = 1.
Next it is shown that the poset of partial orders extending , ordered by extension, has a maximal element. The existence of such a maximal element is proved by applying Zorn's lemma to this poset. Zorn's lemma states that a partial order in which every chain has an upper bound has a maximal element. A chain in this poset is a set of relations ...