Ads
related to: strong product of graphs and diagrams in excel
Search results
Results from the WOW.Com Content Network
The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs ...
strong graph product: it is a commutative and associative operation (for unlabelled graphs), tensor graph product (or direct graph product, categorical graph product, cardinal graph product, Kronecker graph product): it is a commutative and associative operation (for unlabelled graphs), zig-zag graph product; [3] graph product based on other ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
Pages in category "Graph products" The following 12 pages are in this category, out of 12 total. ... Strong product of graphs; T. Tensor product of graphs; V. Vizing ...
A graph or chart or diagram is a diagrammatical illustration of a set of data. If the graph is uploaded as an image file, it can be placed within articles just like any other image. Graphs must be accurate and convey information efficiently. They should be viewable at different computer screen resolutions.
The tensor product of graphs. In graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and; vertices (g,h) and (g',h' ) are adjacent in G × H if and only if. g is adjacent to g' in G, and; h is adjacent to h' in H.
Ads
related to: strong product of graphs and diagrams in excel