Search results
Results from the WOW.Com Content Network
Opsonins induce phagocytosis of targets by binding the targets (e.g. bacteria) and then also binding phagocytic receptors on phagocytes. Thus, opsonins act as bridging molecules between the target and the phagocyte, bringing them into contact, and then usually activating the phagocytic receptor to induce engulfment of the target by the phagocyte.
1) Antibodies (A) and pathogens (B) circular in the blood. 2) The antibodies bind to pathogens with complementary antigen sequences, engaging in opsonization (2a), neutralisation (2b), and agglutination (2c). 3) A phagocyte (C) approaches the pathogen, and Fc region (D) of the antibody binds to one of the Fc receptors (E) on the phagocyte.
C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization : tagging pathogens, immune complexes ( antigen - antibody ), and apoptotic cells for phagocytosis .
Each antibody binds to a specific antigen in a highly specific interaction analogous to a lock and key.. An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that cause disease.
These diverse FcγRs cause different responses in their DCs or macrophages by initiating different signaling pathways that can either activate or inhibit cellular functions. [11] The binding of the immune complex to the DC’s membrane-bound receptor and internalization of the immune complex and receptor begins the process of antigen ...
The binding of C2 and C4b results in C2 being cleaved by C1s into C2a and C2b. C2b diffuses into the plasma as a protein inflammatory mediator while C2a remains attached with C4b, forming the C3-convertase (C4b2a). The function of the membrane-bound C3-convertase is the cleavage of many many molecules of C3 into C3a and C3b.
When the B cells get activated, class switching can occur. The class switching involves switch regions that made up of multiple copies of short repeats (GAGCT and TGGGG). These switches occur at the level of rearrangements of the DNA because there is a looping event that chops off the constant regions for IgM and IgD and form the IgG mRNAs. Any ...
Mechanism of class-switch recombination that allows isotype switching in activated B cells. Immunoglobulin class switching, also known as isotype switching, isotypic commutation or class-switch recombination (CSR), is a biological mechanism that changes a B cell's production of immunoglobulin from one type to another, such as from the isotype IgM to the isotype IgG. [1]