Search results
Results from the WOW.Com Content Network
See also: Positive real numbers § Ratio scale. The ratio type takes its name from the fact that measurement is the estimation of the ratio between a magnitude of a continuous quantity and a unit of measurement of the same kind (Michell, 1997, 1999). Most measurement in the physical sciences and engineering is done on ratio scales.
Now look at the following ratio scale chart, where the scale starts at zero. The visual difference between the bars representing cats and dogs is much less noticeable. This because the ratio scale chart shows the entire range of data. US Pet ownership for 2011-2012 using a ratio scale. Data from Humane Society of the United States.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale). Various attempts have been made to produce a taxonomy of levels of measurement.
Numbers indicate the relative position of items, but not the magnitude of difference. An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales.
For example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so the computed coefficient of variation would be different depending on the scale used. On the other hand, Kelvin temperature has a meaningful zero, the complete absence of thermal energy, and thus is a ratio scale. In plain language ...
These extensions converge with the family of intra-class correlations (ICCs), so there is a conceptually related way of estimating reliability for each level of measurement from nominal (kappa) to ordinal (ordinal kappa or ICC—stretching assumptions) to interval (ICC, or ordinal kappa—treating the interval scale as ordinal), and ratio (ICCs).
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.