Search results
Results from the WOW.Com Content Network
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
A multi-compartment model is a type of mathematical model used for describing the way materials or energies are transmitted among the compartments of a system. Sometimes, the physical system that we try to model in equations is too complex, so it is much easier to discretize the problem and reduce the number of parameters.
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [ 3 ] [ 4 ] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol.
The mixing time of a Markov chain is the number of steps needed for this convergence to happen, to a suitable degree of accuracy. A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains ...
The class of stochastic chains with memory of variable length was introduced by Jorma Rissanen in the article A universal data compression system. [1] Such class of stochastic chains was popularized in the statistical and probabilistic community by P. Bühlmann and A. J. Wyner in 1999, in the article Variable Length Markov Chains.
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...