Search results
Results from the WOW.Com Content Network
It was originally defined as "the quantity or mass of radium emanation in equilibrium with one gram of radium (element)", [1] but is currently defined as 1 Ci = 3.7 × 10 10 decays per second [4] after more accurate measurements of the activity of 226 Ra (which has a specific activity of 3.66 × 10 10 Bq/g [5]).
A number of different units (some only of historical interest) are shown and expressed in terms of the corresponding SI unit. Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article.
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point ...
In the SI system and generally in older metric systems, multiples and fractions of a unit can be described via a prefix on a unit name that implies a decimal (base-10), multiplicative factor. The only exceptions are for the SI-accepted units of time (minute and hour) and angle (degree, arcminute, arcsecond) which, based on ancient convention ...
The angstrom (symbol Å) is a unit of distance used in chemistry and atomic physics equal to 100 pm. The micron (μ) is a unit of distance equal to one micrometre (1 μm). The basic module (M) is a unit of distance equal to one hundred millimetres (100 mm). The myriametre (mym) is a unit of distance equal to ten kilometres (10 km).
The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 2 → 2 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2) and 1 mol molecular oxygen (O 2) that react, 2 mol of water (H 2 O) form.
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.