enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  4. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Since points belonging to a cluster have a low reachability distance to their nearest neighbor, the clusters show up as valleys in the reachability plot. The deeper the valley, the denser the cluster. The image above illustrates this concept. In its upper left area, a synthetic example data set is shown.

  5. Silhouette (clustering) - Wikipedia

    en.wikipedia.org/wiki/Silhouette_(clustering)

    One can also increase the likelihood of the silhouette being maximized at the correct number of clusters by re-scaling the data using feature weights that are cluster specific. [ 4 ] Kaufman et al. introduced the term silhouette coefficient for the maximum value of the mean s ( i ) {\displaystyle s(i)} over all data of the entire dataset, [ 5 ...

  6. Dendrogram - Wikipedia

    en.wikipedia.org/wiki/Dendrogram

    For a clustering example, suppose that five taxa (to ) have been clustered by UPGMA based on a matrix of genetic distances.The hierarchical clustering dendrogram would show a column of five nodes representing the initial data (here individual taxa), and the remaining nodes represent the clusters to which the data belong, with the arrows representing the distance (dissimilarity).

  7. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  8. AOL Mail - AOL Help

    help.aol.com/products/aol-webmail

    Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.

  9. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    Initially, all data is in the same cluster, and the largest cluster is split until every object is separate. Because there exist () ways of splitting each cluster, heuristics are needed. DIANA chooses the object with the maximum average dissimilarity and then moves all objects to this cluster that are more similar to the new cluster than to the ...