enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship. When there is perfect collinearity, the design matrix X {\displaystyle X} has less than full rank , and therefore the moment matrix X T X {\displaystyle X^{\mathsf {T}}X} cannot be inverted .

  3. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [ 2 ] ). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  4. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    One major use of PCR lies in overcoming the multicollinearity problem which arises when two or more of the explanatory variables are close to being collinear. [3] PCR can aptly deal with such situations by excluding some of the low-variance principal components in the regression step.

  5. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    The VIF provides an index that measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient is increased because of collinearity. Cuthbert Daniel claims to have invented the concept behind the variance inflation factor, but did not come up with the name.

  6. Moderation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Moderation_(statistics)

    This is the problem of multicollinearity in moderated regression. Multicollinearity tends to cause coefficients to be estimated with higher standard errors and hence greater uncertainty. Mean-centering (subtracting raw scores from the mean) may reduce multicollinearity, resulting in more interpretable regression coefficients.

  7. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    To detect multi-collinearity among the predictors, one can conduct a linear regression analysis with the predictors of interest for the sole purpose of examining the tolerance statistic used to assess whether multi-collinearity is unacceptably high. Sparseness in the data refers to having a large proportion of empty cells (cells with zero counts).

  8. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.