enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  3. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    In Python, many implementations exist: pyqt_fit.kde Module in the PyQt-Fit package, SciPy (scipy.stats.gaussian_kde), Statsmodels (KDEUnivariate and KDEMultivariate), and scikit-learn (KernelDensity) (see comparison [36]). KDEpy supports weighted data and its FFT implementation is orders of magnitude faster than the other implementations.

  4. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [ S ] and reaction rate in an enzyme-mediated reaction, the data in the following table were ...

  5. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  6. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...

  7. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    The most common method for estimating the Gaussian parameters is to take the logarithm of the data and fit a parabola to the resulting data set. [ 6 ] [ 7 ] While this provides a simple curve fitting procedure, the resulting algorithm may be biased by excessively weighting small data values, which can produce large errors in the profile estimate.

  8. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y , where X and Y are independent, X is Gaussian with mean μ and variance σ 2 , and Y is ...

  9. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    We consider estimating the density of the Gaussian mixture (4π) −1 exp(− 1 ⁄ 2 (x 1 2 + x 2 2)) + (4π) −1 exp(− 1 ⁄ 2 ((x 1 - 3.5) 2 + x 2 2)), from 500 randomly generated points. We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order ...