Search results
Results from the WOW.Com Content Network
Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...
In Python, many implementations exist: pyqt_fit.kde Module in the PyQt-Fit package, SciPy (scipy.stats.gaussian_kde), Statsmodels (KDEUnivariate and KDEMultivariate), and scikit-learn (KernelDensity) (see comparison [36]). KDEpy supports weighted data and its FFT implementation is orders of magnitude faster than the other implementations.
In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [ S ] and reaction rate in an enzyme-mediated reaction, the data in the following table were ...
The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters of the model curve (,) so that the sum of the squares of the deviations () is minimized:
Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...
The most common method for estimating the Gaussian parameters is to take the logarithm of the data and fit a parabola to the resulting data set. [ 6 ] [ 7 ] While this provides a simple curve fitting procedure, the resulting algorithm may be biased by excessively weighting small data values, which can produce large errors in the profile estimate.
In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y , where X and Y are independent, X is Gaussian with mean μ and variance σ 2 , and Y is ...
We consider estimating the density of the Gaussian mixture (4π) −1 exp(− 1 ⁄ 2 (x 1 2 + x 2 2)) + (4π) −1 exp(− 1 ⁄ 2 ((x 1 - 3.5) 2 + x 2 2)), from 500 randomly generated points. We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order ...