Search results
Results from the WOW.Com Content Network
In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal. A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [3] otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid, the truncation plane is not necessarily parallel to the cone's base, as in a frustum.
By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of the products of their bases and heights. Some figures have two parallel bases (such as trapezoids and frustums), both ...
Right Prism. A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.
Right-triangular prism: b = the base side of the prism's triangular base, h = the perpendicular side of the prism's triangular base L = the length of the prism Right circular cylinder: r = the radius of the cylinder
A right trapezoid (also called right-angled trapezoid) has two adjacent right angles. [13] Right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge. An obtuse trapezoid on the other hand has one acute and one obtuse angle on each base.
If the areas of the two parallel faces are A 1 and A 3, the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is A 2, and the height (the distance between the two parallel faces) is h, then the volume of the prismatoid is given by [3] = (+ +).
The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...
This formula holds whether or not the cylinder is a right cylinder. [7] This formula may be established by using Cavalieri's principle. A solid elliptic right cylinder with the semi-axes a and b for the base ellipse and height h. In more generality, by the same principle, the volume of any cylinder is the product of the area of a base and the ...