Search results
Results from the WOW.Com Content Network
Memory hierarchy of an AMD Bulldozer server. The number of levels in the memory hierarchy and the performance at each level has increased over time. The type of memory or storage components also change historically. [6] For example, the memory hierarchy of an Intel Haswell Mobile [7] processor circa 2013 is:
A nested state is called a direct substate when it is not contained by any other state; otherwise, it is referred to as a transitively nested substate. Because the internal structure of a composite state can be arbitrarily complex, any hierarchical state machine can be viewed as an internal structure of some (higher-level) composite state.
Object-oriented applications contain complex webs of interrelated objects. Objects are linked to each other by one object either owning or containing another object or holding a reference to another object. This web of objects is called an object graph and it is the more abstract structure that can be used in discussing an application's state.
However, since memory is never physically created as a ring, a linear representation is generally used as is done below. In computer science , a circular buffer , circular queue , cyclic buffer or ring buffer is a data structure that uses a single, fixed-size buffer as if it were connected end-to-end.
Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores. Cache hierarchy is a form and part of memory hierarchy and can be considered a form of tiered storage. [1] This design was intended to allow CPU cores to process faster despite the memory latency of main memory access.
In software engineering, a class diagram [1] in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among objects. The class diagram is the main building block of object-oriented modeling.
The memory model specifies synchronization barriers that are established via special, well-defined synchronization operations such as acquiring a lock by entering a synchronized block or method. The memory model stipulates that changes to the values of shared variables only need to be made visible to other threads when such a synchronization ...
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops.The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures.