enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    This Gaussian process is called the Neural Network Gaussian Process (NNGP). [ 7 ] [ 36 ] [ 37 ] It allows predictions from Bayesian neural networks to be more efficiently evaluated, and provides an analytic tool to understand deep learning models.

  3. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/.../Neural_network_Gaussian_process

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  4. Large width limits of neural networks - Wikipedia

    en.wikipedia.org/wiki/Large_width_limits_of...

    Video: as the width of the network increases, the output distribution simplifies, ultimately converging to a Neural network Gaussian process in the infinite width limit. Artificial neural networks are a class of models used in machine learning, and inspired by biological neural networks. They are the core component of modern deep learning ...

  5. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    Neural Tangents is a free and open-source Python library used for computing and doing inference with the infinite width NTK and neural network Gaussian process (NNGP) corresponding to various common ANN architectures. [26] In addition, there exists a scikit-learn compatible implementation of the infinite width NTK for Gaussian processes called ...

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.

  7. Comparison of Gaussian process software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_Gaussian...

    This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations.. This article is written from the point of view of Bayesian statistics, which may use a terminology different from the one commonly used in kriging.

  8. Vecchia approximation - Wikipedia

    en.wikipedia.org/wiki/Vecchia_approximation

    Vecchia approximation is a Gaussian processes approximation technique originally developed by Aldo Vecchia, a statistician at United States Geological Survey. [1] It is one of the earliest attempts to use Gaussian processes in high-dimensional settings. It has since been extensively generalized giving rise to many contemporary approximations.

  9. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...