enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uracil - Wikipedia

    en.wikipedia.org/wiki/Uracil

    Uracil pairs with adenine through hydrogen bonding. When base pairing with adenine, uracil acts as both a hydrogen bond acceptor and a hydrogen bond donor. In RNA, uracil binds with a ribose sugar to form the ribonucleoside uridine. When a phosphate attaches to uridine, uridine 5′-monophosphate is produced. [6]

  3. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red. Purine nucleobases are fused-ring molecules. Pyrimidine nucleobases are simple ring molecules.

  4. Adenine - Wikipedia

    en.wikipedia.org/wiki/Adenine

    Adenine (/ ˈ æ d ɪ n iː n /, / ˈ æ d ɪ n ɪ n /) (symbol A or Ade) is a purine nucleotide base. It is one of the nucleobases in the nucleic acids, DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA. In cells adenine, as an independent molecule, is rare.

  5. Nucleotide - Wikipedia

    en.wikipedia.org/wiki/Nucleotide

    The purine bases adenine and guanine and pyrimidine base cytosine occur in both DNA and RNA, while the pyrimidine bases thymine (in DNA) and uracil (in RNA) occur in just one. Adenine forms a base pair with thymine with two hydrogen bonds, while guanine pairs with cytosine with three hydrogen bonds.

  6. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    An unnatural base pair (UBP) is a designed subunit (or nucleobase) of DNA which is created in a laboratory and does not occur in nature. DNA sequences have been described which use newly created nucleobases to form a third base pair, in addition to the two base pairs found in nature, A-T (adenine – thymine) and G-C (guanine – cytosine).

  7. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    The double helical structures of DNA or RNA are generally known to have base pairs between complementary bases, Adenine:Thymine (Adenine:Uracil in RNA) or Guanine:Cytosine. They involve specific hydrogen bonding patterns corresponding to their respective Watson-Crick edges, and are considered as Canonical Base Pairs.

  8. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    A purine base always pairs with a pyrimidine base (guanine (G) pairs with cytosine (C) and adenine (A) pairs with thymine (T) or uracil (U)). DNA's secondary structure is predominantly determined by base-pairing of the two polynucleotide strands wrapped around each other to form a double helix. Although the two strands are aligned by hydrogen ...

  9. Wobble base pair - Wikipedia

    en.wikipedia.org/wiki/Wobble_base_pair

    Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).