Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
The power mean family of divisor methods includes the Adams, Huntington-Hill, Webster, Dean, and Jefferson methods (either directly or as limits). For a given constant p, the power mean method has signpost function post(k) = p √ k p + (k+1) p.
Pages in category "Divide-and-conquer algorithms" The following 9 pages are in this category, out of 9 total. This list may not reflect recent changes. ...
Median of medians finds an approximate median in linear time. Using this approximate median as an improved pivot, the worst-case complexity of quickselect reduces from quadratic to linear, which is also the asymptotically optimal worst-case complexity of any selection algorithm. In other words, the median of medians is an approximate median ...
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
Quicksort is a type of divide-and-conquer algorithm for sorting an array, based on a partitioning routine; the details of this partitioning can vary somewhat, so that quicksort is really a family of closely related algorithms. Applied to a range of at least two elements, partitioning produces a division into two consecutive non empty sub-ranges ...
Leibniz formula for π — alternating series with very slow convergence; Wallis product — infinite product converging slowly to π/2; Viète's formula — more complicated infinite product which converges faster; Gauss–Legendre algorithm — iteration which converges quadratically to π, based on arithmetic–geometric mean
Fibonacci search can divide it into parts approaching 1:1.618 while using the simpler operations. If the elements being searched have non-uniform access memory storage (i. e., the time needed to access a storage location varies depending on the location accessed), the Fibonacci search may have the advantage over binary search in slightly ...