enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb. For example: The peaks of a 3D polyhedron or plane tiling are its 0-faces or vertices. The peaks of a 4D polytope or 3-honeycomb are its 1-faces or edges.

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition: The vertices of a convex regular polyhedron all lie on a sphere. All the dihedral angles of the polyhedron are equal; All the vertex figures of the polyhedron are regular polygons.

  4. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides) meet. [3] A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. An edge may also be an infinite line separating two half-planes. [4]

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Their appearance is unchanged by some reflection by plane or rotation around the axes passing through two opposite vertices, edges, or faces in space. Each symmetry may change the location of a given element, but the set of all vertices (likewise faces and edges) is unchanged. The collection of symmetries of a polyhedron is called its symmetry ...

  6. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  7. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  8. Polytope - Wikipedia

    en.wikipedia.org/wiki/Polytope

    A polygon is a 2-dimensional polytope. Polygons can be characterised according to various criteria. Some examples are: open (excluding its boundary), bounding circuit only (ignoring its interior), closed (including both its boundary and its interior), and self-intersecting with varying densities of different regions.

  9. Projective polyhedron - Wikipedia

    en.wikipedia.org/wiki/Projective_polyhedron

    The hemi-cube is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices. The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra: [4] Hemi-cube, {4,3}/2; Hemi-octahedron, {3,4}/2