Search results
Results from the WOW.Com Content Network
Disjunction introduction or addition (also called or introduction) [1] [2] [3] is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true. An example in English: Socrates is a man.
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination.
In propositional logic, tautology is either of two commonly used rules of replacement. [1] [2] [3] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs. They are: The principle of idempotency of disjunction:
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
As one can verify, LP preserves most other inference patterns that one would expect to be valid, such as De Morgan's laws and the usual introduction and elimination rules for negation, conjunction, and disjunction. Surprisingly, the logical truths (or tautologies) of LP are precisely those of classical propositional logic. [13]
In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables.For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation instead of a vertical presentation of rules.
The introduction rules of natural deduction are viewed as right rules in the sequent calculus, and are structurally very similar. The elimination rules on the other hand turn into left rules in the sequent calculus. To give an example, consider disjunction; the right rules are familiar: