enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Bell series - Wikipedia

    en.wikipedia.org/wiki/Bell_series

    The following is a table of the Bell series of well-known arithmetic functions. The Möbius function has () =.; The Mobius function squared has () = +.; Euler's totient has () =.; The multiplicative identity of the Dirichlet convolution has () =

  5. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  6. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced residue systems modulo 12 are: Some other reduced residue systems modulo 12 are: {13,17,19,23}

  7. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    A primitive polynomial of degree m has m different roots in GF(p m), which all have order p m − 1, meaning that any of them generates the multiplicative group of the field. Over GF(p) there are exactly φ(p m − 1) primitive elements and φ(p m − 1) / m primitive polynomials, each of degree m, where φ is Euler's totient function. [1]

  8. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The definition of the multiplicative order implies that, if n is the multiplicative order of b modulo p, then p is a divisor of (). The converse is not true, but one has the following. If n > 0 is a positive integer and b > 1 is an integer, then (see below for a proof) =, where

  9. Average order of an arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Average_order_of_an...

    An average order of φ(n), Euler's totient function of n, is 6n / π 2; An average order of r(n), the number of ways of expressing n as a sum of two squares, is π; The average order of representations of a natural number as a sum of three squares is 4πn / 3;