enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  3. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  4. Partial fractions in complex analysis - Wikipedia

    en.wikipedia.org/wiki/Partial_fractions_in...

    In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When f ( z ) {\displaystyle f(z)} is a rational function, this reduces to the usual method of partial fractions .

  5. Category:Partial fractions - Wikipedia

    en.wikipedia.org/wiki/Category:Partial_fractions

    Pages in category "Partial fractions" The following 3 pages are in this category, out of 3 total. This list may not reflect recent changes. H. Heaviside cover-up ...

  6. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Using the symbols , for the partial sums of the original series and , for the partial sums of the series after multiplication by , this definition implies that , =, for all , and therefore also , =,, when the limits exist. Therefore if a series is summable, any nonzero scalar multiple of the series is also summable and vice versa: if a series ...

  8. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If this infinite continued fraction converges at all, it must converge to one of the roots of the monic polynomial x 2 + bx + c = 0. Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a monic polynomial with real ...

  9. Restricted partial quotients - Wikipedia

    en.wikipedia.org/wiki/Restricted_partial_quotients

    then ζ is a quadratic irrational number, and its representation as a regular continued fraction is periodic. Clearly any regular periodic continued fraction consists of restricted partial quotients, since none of the partial denominators can be greater than the largest of a 0 through a k+m. Historically, mathematicians studied periodic ...