Search results
Results from the WOW.Com Content Network
In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to
As an example, VBA code written in Microsoft Access can establish references to the Excel, Word and Outlook libraries; this allows creating an application that – for instance – runs a query in Access, exports the results to Excel and analyzes them, and then formats the output as tables in a Word document or sends them as an Outlook email.
The notation a ≥ b or a ⩾ b or a ≧ b means that a is greater than or equal to b (or, equivalently, at least b, or not less than b). In the 17th and 18th centuries, personal notations or typewriting signs were used to signal inequalities. [ 2 ]
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry , height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers .
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Legendre's formula can be used to prove Kummer's theorem. As one special case, it can be used to prove that if n is a positive integer then 4 divides ( 2 n n ) {\displaystyle {\binom {2n}{n}}} if and only if n is not a power of 2.
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix.. This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C).
Proofs of the mathematical result that the rational number 22 / 7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.