Search results
Results from the WOW.Com Content Network
If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x 1, y 1), z(x 1, y 2), z(x 2, y 1), or ...
The two sequences {Τ 2n−1} and {Τ 2n} might themselves define two convergent continued fractions that have two different values, x odd and x even. In this case the continued fraction defined by the sequence { Τ n } diverges by oscillation between two distinct limit points.
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
Sometimes it is useful to write a ratio in the form 1:x or x:1, where x is not necessarily an integer, to enable comparisons of different ratios. For example, the ratio 4:5 can be written as 1:1.25 (dividing both sides by 4) Alternatively, it can be written as 0.8:1 (dividing both sides by 5).
In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also ...
In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered.
These twenty fractions are all the positive k / d ≤ 1 whose denominators are the divisors d = 1, 2, 4, 5, 10, 20. The fractions with 20 as denominator are those with numerators relatively prime to 20, namely 1 / 20 , 3 / 20 , 7 / 20 , 9 / 20 , 11 / 20 , 13 / 20 , 17 / 20 , 19 ...
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .