Search results
Results from the WOW.Com Content Network
Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s [3] until the end of the 19th century.
In 3D computer graphics, Schlick’s approximation, named after Christophe Schlick, is a formula for approximating the contribution of the Fresnel factor in the specular reflection of light from a non-conducting interface (surface) between two media. [1]
Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, [4] which is the ratio of the reflected to incident electric field; [5] as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.
Unlike lenses or curved mirrors, zone plates use diffraction instead of refraction or reflection. Based on analysis by French physicist Augustin-Jean Fresnel, they are sometimes called Fresnel zone plates in his honor. The zone plate's focusing ability is an extension of the Arago spot phenomenon caused by diffraction from an opaque disc. [2]
A Fresnel lantern with the lens open to show the ridges. Glass Fresnel lenses also are used in lighting instruments for theatre and motion pictures (see Fresnel lantern); such instruments are often called simply Fresnels. The entire instrument consists of a metal housing, a reflector, a lamp assembly, and a Fresnel lens.
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.
The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media.
In regular reflection, the Fresnel equations describe the physics, which includes both reflection and refraction, at the optical boundary of a plate. A "pile of plates" is still a term of art used to describe a polarizer in which a polarized beam is obtained by tilting a pile of plates at an angle to an unpolarized incident beam.