Search results
Results from the WOW.Com Content Network
A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps , gas compressors , turbines , nozzles , and diffusers .
Where 1 to 3ss in Figure 1 represents the isentropic process beginning from stator inlet at 1 to rotor outlet at 3. And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator ...
Process 3–4: Isentropic expansion: The dry saturated vapour expands through a turbine, generating power. This decreases the temperature and pressure of the vapour, and some condensation may occur. The output in this process can be easily calculated using the chart or tables noted above. Process 4–1: Constant pressure heat rejection in condenser
isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor. isobaric process – heat rejection (in the atmosphere). Actual Brayton cycle: adiabatic process – compression; isobaric process – heat ...
An ideal steam turbine is considered to be an isentropic process, or constant entropy process, in which the entropy of the steam entering the turbine is equal to the entropy of the steam leaving the turbine. No steam turbine is truly isentropic, however, with typical isentropic efficiencies ranging from 20 to 90% based on the application of the ...
The initial conditions exist at point 1. Point 2 exists at the nozzle throat, where M = 1. Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for ...
An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C). For reversible processes, such as those found in the Carnot cycle:
The stagnation state of the gas at the nozzle entry is represented by point 01. The gas expands adiabatically in the nozzles from a pressure p 1 to p 2 with an increase in its velocity from c 1 to c 2. Since this is an energy transformation process, the stagnation enthalpy remains constant but the stagnation pressure decreases (p 01 > p 02) due ...