Search results
Results from the WOW.Com Content Network
For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 ≡ 4 (mod 6). Equivalently, n − 1 / 3 ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6). Conjecturally, this inverse relation forms a tree except for the 1–2–4 loop (the inverse of the 4–2–1 loop of the unaltered function f defined in the Statement of the problem section of ...
1.4 m – length of a Peel P50, the world's smallest car; 1.435 m – standard gauge of railway track used by about 60% of railways in the world = 4 ft 8 1 ⁄ 2 in; 2.5 m – distance from the floor to the ceiling in an average residential house [118] 2.7 m – length of the Starr Bumble Bee II, the smallest plane
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
1 2 5 (Explanations) 4)500 1 0 ( 5 - 4 = 1) 2 0 (10 - 8 = 2) 0 (20 - 20 = 0) In Bolivia , Brazil , Paraguay , Venezuela , French-speaking Canada , Colombia , and Peru , the European notation (see below) is used, except that the quotient is not separated by a vertical line, as shown below: