Ads
related to: factor complex polynomials calculator algebra 2kutasoftware.com has been visited by 10K+ users in the past month
- Sample worksheets
Explore Our Free Worksheets
Numerous Different Topics Included
- Free trial
Discover the Flexibility
Of Our Worksheet Generators.
- Sample worksheets
Search results
Results from the WOW.Com Content Network
Factorization depends on the base field. For example, the fundamental theorem of algebra, which states that every polynomial with complex coefficients has complex roots, implies that a polynomial with integer coefficients can be factored (with root-finding algorithms) into linear factors over the complex field C.
Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra), it follows that every polynomial with real coefficients can be factored into factors of degree no higher than 2: just 1st-degree and quadratic factors.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
In particular, a univariate polynomial with complex coefficients admits a unique (up to ordering) factorization into linear polynomials: this is a version of the fundamental theorem of algebra. In this case, the factorization can be done with root-finding algorithms. The case of polynomials with integer coefficients is fundamental for computer ...
Sometimes one or more roots of a polynomial are known, perhaps having been found using the rational root theorem. If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1.
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
Any general polynomial of degree n = + + + + (with the coefficients being real or complex numbers and a n ≠ 0) has n (not necessarily distinct) complex roots r 1, r 2, ..., r n by the fundamental theorem of algebra.
It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().
Ads
related to: factor complex polynomials calculator algebra 2kutasoftware.com has been visited by 10K+ users in the past month