Search results
Results from the WOW.Com Content Network
A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
Indeed, this problem does not have an FPTAS unless P=NP. The same is true for the two-dimensional knapsack problem. The same is true for the multiple subset sum problem: the quasi-dominance relation should be: s quasi-dominates t iff max(s 1, s 2) ≤ max(t 1, t 2), but it is not preserved by transitions, by the same example as above. 2.
In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.
An example is the partition problem. Both weak NP-hardness and weak polynomial-time correspond to encoding the input agents in binary coding. If a problem is strongly NP-hard, then it does not even have a pseudo-polynomial time algorithm. It also does not have a fully-polynomial time approximation scheme. An example is the 3-partition problem.
The problem is NP-hard, but it has efficient constant-factor approximation algorithms as well as an FPTAS. In practice, usually the demands s i are publicly known (e.g., the length of the advertisement of each advertiser must be known), but the valuations v i are the private information of the bidders.
For the one-dimensional case, the new patterns are introduced by solving an auxiliary optimization problem called the knapsack problem, using dual variable information from the linear program. The knapsack problem has well-known methods to solve it, such as branch and bound and dynamic programming. The Delayed Column Generation method can be ...
It is a special case of the integer knapsack problem, and has applications wider than just currency. It is also the most common variation of the coin change problem , a general case of partition in which, given the available denominations of an infinite set of coins, the objective is to find out the number of possible ways of making a change ...