Search results
Results from the WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.
The solutions of a quadratic equation are the zeros (or roots) of the corresponding quadratic function, of which there can be two, one, or zero. The solutions are described by the quadratic formula. A quadratic polynomial or quadratic function can involve more than one variable. For example, a two-variable quadratic function of variables ...
Figure 4. Graphing calculator computation of one of the two roots of the quadratic equation 2x 2 + 4x − 4 = 0. Although the display shows only five significant figures of accuracy, the retrieved value of xc is 0.732050807569, accurate to twelve significant figures. A quadratic function without real root: y = (x − 5) 2 + 9.
The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the -direction. Rotation about the symmetry axis of the parabolae produces a set of confocal paraboloids, the coordinate system of tridimensional parabolic ...
In mathematics, a trident curve (also trident of Newton or parabola of Descartes) is any member of the family of curves that have the formula: x y + a x 3 + b x 2 + c x = d {\displaystyle xy+ax^{3}+bx^{2}+cx=d}
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...