Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, [2] to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra , and as such has numerous applications in many areas of mathematics, as well as in applied ...
Algorithms for matrix multiplication: Strassen algorithm; Coppersmith–Winograd algorithm; Cannon's algorithm — a distributed algorithm, especially suitable for processors laid out in a 2d grid; Freivalds' algorithm — a randomized algorithm for checking the result of a multiplication; Matrix decompositions:
The end-loop marker specifies the name of the index variable, which must correspond to the name of the index variable at the start of the for-loop. Some languages (PL/I, Fortran 95, and later) allow a statement label at the start of a for-loop that can be matched by the compiler against the same text on the corresponding end-loop statement.
#!/usr/bin/env python3 import numpy as np def power_iteration (A, num_iterations: int): # Ideally choose a random vector # To decrease the chance that our vector # Is orthogonal to the eigenvector b_k = np. random. rand (A. shape [1]) for _ in range (num_iterations): # calculate the matrix-by-vector product Ab b_k1 = np. dot (A, b_k) # calculate the norm b_k1_norm = np. linalg. norm (b_k1 ...