Search results
Results from the WOW.Com Content Network
Epithelial–mesenchymal transition was first recognized as a feature of embryogenesis by Betty Hay in the 1980s. [ 1 ] [ 2 ] EMT, and its reverse process, MET ( mesenchymal-epithelial transition ) are critical for development of many tissues and organs in the developing embryo, and numerous embryonic events such as gastrulation , neural crest ...
Currently, three main theories have been proposed to explain the metastatic pathway of cancer: the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) hypothesis (1), the cancer stem cell hypothesis (2), and the macrophage–cancer cell fusion hybrid hypothesis (3).
During the epithelial–mesenchymal transition (EMT), the primary mesenchyme cells (PMCs) detach from the epithelium and become internalized mesenchyme cells that can migrate freely. [ 1 ] While the mechanisms of ingression are not fully understood, studies using the sea urchin as a model organism have begun to shed light on this developmental ...
Unlike epithelial cells – which are stationary and characterized by an apico-basal polarity with binding by a basal lamina, tight junctions, gap junctions, adherent junctions and expression of cell-cell adhesion markers such as E-cadherin, [4] mesenchymal cells do not make mature cell-cell contacts, can invade through the extracellular matrix, and express markers such as vimentin ...
Neural mesenchyme soon undergoes a mesenchymal–epithelial transition under the influence of WNT6 produced by ectoderm to form somites. [20] These structures will undergo a secondary EMT as the somite tissue migrates later in development to form structural connective tissue such as cartilage and skeletal muscle. [21]
All IF proteins are expressed in a highly developmentally-regulated fashion; vimentin is the major cytoskeletal component of mesenchymal cells. Because of this, vimentin is often used as a marker of mesenchymally-derived cells or cells undergoing an epithelial-to-mesenchymal transition (EMT) during both normal development and metastatic ...
ERM plays a role in cementum repair and regeneration. [1] The stem cells in ERM can undergo an epithelial–mesenchymal transition and differentiate into diverse types of cells of mesodermal and ectodermal origin like bone, fat, cartilage and neuron-like cells. [2]
Tissue separation can also occur via more dramatic cellular differentiation events during which epithelial cells become mesenchymal (see Epithelial–mesenchymal transition). Mesenchymal cells typically leave the epithelial tissue as a consequence of changes in cell adhesive and contractile properties. Following epithelial-mesenchymal ...