Search results
Results from the WOW.Com Content Network
Print/export Download as PDF; Printable version; In other projects ... In mathematics, the connectedness theorem may be one of Deligne's connectedness theorem ...
Every Riemann surface is the quotient of the free, proper and holomorphic action of a discrete group on its universal covering and this universal covering, being a simply connected Riemann surface, is holomorphically isomorphic (one also says: "conformally equivalent" or "biholomorphic") to one of the following: the Riemann sphere; the complex ...
A topological space is said to be connected if it is not the union of two disjoint nonempty open sets. [2] A set is open if it contains no point lying on its boundary; thus, in an informal, intuitive sense, the fact that a space can be partitioned into disjoint open sets suggests that the boundary between the two sets is not part of the space, and thus splits it into two separate pieces.
Created Date: 8/30/2012 4:52:52 PM
Connectedness features prominently in the definition of total orders: a total (or linear) order is a partial order in which any two elements are comparable; that is, the order relation is connected. Similarly, a strict partial order that is connected is a strict total order.
In algebraic geometry, Zariski's connectedness theorem (due to Oscar Zariski) says that under certain conditions the fibers of a morphism of varieties are connected. It is an extension of Zariski's main theorem to the case when the morphism of varieties need not be birational.
In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.
In mathematics, Grothendieck's connectedness theorem, [1] [2] states that if A is a complete Noetherian local ring whose spectrum is k-connected and f is in the maximal ideal, then Spec(A/fA) is (k − 1)-connected.