Search results
Results from the WOW.Com Content Network
Paraconformity. A paraconformity is a type of unconformity in which the sedimentary layers above and below the unconformity are parallel, but there is no obvious erosional break between them. A break in sedimentation is indicated, for example, by fossil evidence. It is also called nondepositional unconformity or pseudoconformity.
H.M. – harmonic mean. HOL – higher-order logic. Hom – Hom functor. hom – hom-class. hot – higher order term. HOTPO – half or triple plus one. hvc – havercosine function. (Also written as havercos.) hyp – hypograph of a function.
Depending on authors, the term "maps" or the term "functions" may be reserved for specific kinds of functions or morphisms (e.g., function as an analytic term and map as a general term). mathematics See mathematics. multivalued A "multivalued function” from a set A to a set B is a function from A to the subsets of B.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
With mathematicians pursuing greater rigor and more abstract foundations, some proposed defining mathematics purely in terms of deduction and logic: Mathematics is the science that draws necessary conclusions. [10] Benjamin Peirce 1870. All Mathematics is Symbolic Logic. [8] Bertrand Russell 1903
A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". [166] [167] A common approach is to define mathematics by its object of study. [168] [169] [170 ...
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.