enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i,F with coefficients in a field F. These can differ, but only when the characteristic of F is a prime number p for which there is some p-torsion ...

  4. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. [2]

  5. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0. by ...

  6. Group cohomology - Wikipedia

    en.wikipedia.org/wiki/Group_cohomology

    Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology.

  7. Postnikov system - Wikipedia

    en.wikipedia.org/wiki/Postnikov_system

    Determination of the Second Homology and Cohomology Groups of a Space by Means of Homotopy Invariants - gives accessible examples of Postnikov invariants; Hatcher, Allen (2002). Algebraic topology. Cambridge University Press. ISBN 978-0-521-79540-1. Zhang. "Postnikov towers, Whitehead towers and their applications (handwritten notes)" (PDF).

  8. Algebraic K-theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_K-theory

    Whitehead proved that simple homotopy equivalence is a finer invariant than homotopy equivalence by introducing an invariant called the torsion. The torsion of a homotopy equivalence takes values in a group now called the Whitehead group and denoted Wh(π), where π is the fundamental group of the target complex. Whitehead found examples of non ...

  9. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    For a torus, the first Betti number is b 1 = 2 , which can be intuitively thought of as the number of circular "holes" Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object.