Search results
Results from the WOW.Com Content Network
(A function of arity n thus has arity n+1 considered as a relation.) In computer programming, there is often a syntactical distinction between operators and functions; syntactical operators usually have arity 1, 2, or 3 (the ternary operator?: is also common). Functions vary widely in the number of arguments, though large numbers can become ...
In mathematics and optimization, a pseudo-Boolean function is a function of the form :, where B = {0, 1} is a Boolean domain and n is a nonnegative integer called the arity of the function. A Boolean function is then a special case, where the values are also restricted to 0 or 1.
Map is sometimes generalized to accept dyadic (2-argument) functions that can apply a user-supplied function to corresponding elements from two lists. Some languages use special names for this, such as map2 or zipWith. Languages using explicit variadic functions may have versions of map with variable arity to support variable-arity functions ...
In a sense, these are nullary (i.e. 0-arity) predicates. In first-order logic, a predicate forms an atomic formula when applied to an appropriate number of terms. In set theory with the law of excluded middle, predicates are understood to be characteristic functions or set indicator functions (i.e., functions from a set element to a truth value).
An n-ary operation ω on a set X is a function ω: X n → X. The set X n is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non-negative integer n (the number of operands) is called the arity of the operation. Thus a unary operation has arity one, and a binary operation has arity two.
The interpretation of a constant symbol (a function symbol of arity 0) is a function from D 0 (a set whose only member is the empty tuple) to D, which can be simply identified with an object in D. For example, an interpretation may assign the value I ( c ) = 10 {\displaystyle I(c)=10} to the constant symbol c {\displaystyle c} .
The notation f/n is commonly used to denote a term with functor f and arity n. Special cases of compound terms: Lists are defined inductively: The atom [] is a list. A compound term with functor . (dot) and arity 2, whose second argument is a list, is itself a list. There exists special syntax for denoting lists: .(A, B) is equivalent to [A|B].
The hypergeometric function is an example of a four-argument function. The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as f ( x ) = x 2 {\displaystyle f(x)=x^{2}} , is called a unary function .