Search results
Results from the WOW.Com Content Network
The Legendre polynomials are closely related to hypergeometric series. In the form of spherical harmonics, they express the symmetry of the two-sphere under the action of the Lie group SO(3). There are many other Lie groups besides SO(3), and analogous generalizations of the Legendre polynomials exist to express the symmetries of semi-simple ...
The space of complex-valued class functions of a finite group G has a natural inner product: , := | | () ¯ where () ¯ denotes the complex conjugate of the value of on g.With respect to this inner product, the irreducible characters form an orthonormal basis for the space of class functions, and this yields the orthogonality relation for the rows of the character table:
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:
Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3) , the group of rotations in three dimensions, and thus play a central ...
It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero. Then the sequence ( P n ) ∞ n =0 of orthogonal polynomials is defined by the relations deg P n = n , P m , P n = 0 for m ≠ n . {\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text ...
Download as PDF; Printable version; ... Mathieu functions of the first kind can be represented as Fourier series: [5] ... satisfy orthogonality relations ...
In mathematics, Schur's lemma [1] is an elementary but extremely useful statement in representation theory of groups and algebras.In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...