Search results
Results from the WOW.Com Content Network
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
This is a list of datasets for machine learning research. It is part of the list of datasets for machine-learning research. These datasets consist primarily of images or videos for tasks such as object detection, facial recognition, and multi-label classification.
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Pages in category "Datasets in machine learning" The following 12 pages are in this category, out of 12 total. This list may not reflect recent changes. ...
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
The groundwater flow between neighboring prisms is calculated using 2-dimensional horizontal groundwater flow equations. Vertical flows are found by applying one-dimensional flow equations in a vertical sense, or they can be derived from the water balance: excess of horizontal inflow over horizontal outflow (or vice versa) is translated into ...
Various plots of the multivariate data set Iris flower data set introduced by Ronald Fisher (1936). [1]A data set (or dataset) is a collection of data.In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the data set in question.
The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [4] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes. The Caltech 101 images, along with the annotations, were used for another one-shot learning paper at Caltech. [5]