Search results
Results from the WOW.Com Content Network
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]
The original "body-wave magnitude" – mB or m B (uppercase "B") – was developed by Gutenberg 1945c and Gutenberg & Richter 1956 [25] to overcome the distance and magnitude limitations of the M L scale inherent in the use of surface waves. mB is based on the P and S waves, measured over a longer period, and does not saturate until around M 8.
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and
(1) of Percaru and Berckhemer (1978) for the magnitude range 5.0 ≤ M s ≤ 7.5 is not reliable due to the inconsistency of defined magnitude range (moderate to large earthquakes defined as M s ≤ 7.0 and M s = 7–7.5) and scarce data in lower magnitude range (≤ 7.0) which rarely represents the global seismicity (e.g., see Figs. 1A, B, 4 ...
Distribution of seismic intensity observation points for the offshore Miyagi earthquakes in 1978 and 2005. The former had a magnitude of 7.4 with a maximum seismic intensity of 5, while the latter had a magnitude of 7.2 with a maximum seismic intensity of 6-. The density of observation points was higher in 2005.
PGA records the acceleration (rate of change of speed) of these movements, while peak ground velocity is the greatest speed (rate of movement) reached by the ground, and peak displacement is the distance moved. [7] [8] These values vary in different earthquakes, and in differing sites within one earthquake event, depending on a number of ...
The path of this projectile launched from a height y 0 has a range d. In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of ...
Average thickness of Milky Way Galaxy [43] (1,000 to 3,000 ly by 21 cm observations [44]) 10 20: 100 Em: 113.5 Em Thickness of Milky Way Galaxy's gaseous disk [45] 10 21: 1 zettameter (Zm) 1.54 Zm Distance to SN 1987A, the most recent naked eye supernova 1.62 Zm Distance to the Large Magellanic Cloud (a dwarf galaxy orbiting the Milky Way) 1.66 Zm