Search results
Results from the WOW.Com Content Network
m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
There are many kinds, generally written as A-B coupling, meaning the A of a slow wave is coupled with the B of a fast wave. For example, phase–amplitude coupling is where the phase of a slow wave is coupled with the amplitude of a fast wave. [70] The theta-gamma code is a coupling between theta wave and gamma wave in the hippocampal network ...
[1] [2] [3] Such motions may be considered as a particular kind of complex harmonic motion. The appearance of the figure is sensitive to the ratio a / b . For a ratio of 1, when the frequencies match a=b, the figure is an ellipse, with special cases including circles (A = B, δ = π / 2 radians) and lines (δ = 0). A small change ...
Polarization (waves) Coherence (physics), the quality of a wave to display a well defined phase relationship in different regions of its domain of definition; Hilbert transform, a method of changing phase by 90° Reflection phase shift, a phase change that happens when a wave is reflected off of a boundary from fast medium to slow medium
For set representing all notes of a major triad: [1 5 ⁄ 4 3 ⁄ 2] the LCD is 4 therefore T = 4 ⁄ f. For set representing all notes of a minor triad: [1 6 ⁄ 5 3 ⁄ 2] the LCD is 10 therefore T = 10 ⁄ f. If no least common denominator exists, for instance if one of the above elements were irrational, then the wave would not be periodic. [4]
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]
which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.