enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.

  5. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...

  6. Rational sieve - Wikipedia

    en.wikipedia.org/wiki/Rational_sieve

    Like the general number field sieve, the rational sieve cannot factor numbers of the form p m, where p is a prime and m is an integer. This is not a huge problem, though—such numbers are statistically rare, and moreover there is a simple and fast process to check whether a given number is of this form.

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).

  8. Williams's p + 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Williams's_p_+_1_algorithm

    At this point gcd(91645-2,112729) = 811, so 811 is a non-trivial factor of 112729. Notice that p−1 = 810 = 2 × 5 × 3 4. The number 9! is the lowest factorial which is multiple of 810, so the proper factor 811 is found in this step. The factor 139 is not found this time because p−1 = 138 = 2 × 3 × 23 which is not a divisor of 9!

  9. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.