Ad
related to: laminar flow vs plug flow gas pump temperature gauge
Search results
Results from the WOW.Com Content Network
In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.
A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process mechanisms. A laminar flow design for animal husbandry of rats for disease management was developed by Beall et al. 1971 and became a standard around the world [9] including in the then-Eastern Bloc. [10]
A typical plug flow reactor could be a tube packed with some solid material (frequently a catalyst). Typically these types of reactors are called packed bed reactors or PBR's. Sometimes the tube will be a tube in a shell and tube heat exchanger. When a plug flow model can not be applied, the dispersion model is usually employed. [2] [3]
Using ideal gas equation of state for constant temperature process (i.e., / is constant) and the conservation of mass flow rate (i.e., ˙ = is constant), the relation Qp = Q 1 p 1 = Q 2 p 2 can be obtained. Over a short section of the pipe, the gas flowing through the pipe can be assumed to be incompressible so that Poiseuille law can be used ...
A laminar flow reactor (LFR) is a type of chemical reactor that uses laminar flow to control reaction rate, and/or reaction distribution. LFR is generally a long tube with constant diameter that is kept at constant temperature. Reactants are injected at one end and products are collected and monitored at the other. [1]
At low Reynolds numbers, flow tends towards laminar flow, whereas at high numbers turbulence results from differences in fluid speed. In general, laminar flow occurs when Re < 2300 and turbulent flow occurs when Re >4000. In the interval, both laminar and turbulent flows are possible and these are called transition flows.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Ad
related to: laminar flow vs plug flow gas pump temperature gauge