enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    In machine learning, backpropagation [1] is a gradient estimation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks.

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Backpropagation through time (BPTT) is a gradient-based technique for training certain types of recurrent neural networks, such as Elman networks. The algorithm was independently derived by numerous researchers.

  4. Data Base Task Group - Wikipedia

    en.wikipedia.org/wiki/Data_Base_Task_Group

    The specification is often referred to as the DBTG database model or the CODASYL database model. As well as the data model, many basic concepts of database terminology were introduced by this group, notably the concepts of schema and subschema.

  5. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  6. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Later in the 1950s, Frank Rosenblatt used SGD to optimize his perceptron model, demonstrating the first applicability of stochastic gradient descent to neural networks. [12] Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden ...

  8. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    ImageNet is a large visual database envisioned by Fei-Fei Li from Stanford University, who realized that the best machine learning algorithms wouldn't work well if the data didn't reflect the real world. [46] For many, ImageNet was the catalyst for the AI boom [47] of the 21st century. 2010: Project: Kaggle Competition

  9. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]