Search results
Results from the WOW.Com Content Network
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1 , …, φ n − 1 , where the domain of each φ except φ n − 1 is [0, π ) , and the domain of φ n − 1 is [0, 2 π ) .
Roger Penrose's solution of the illumination problem using elliptical arcs (blue) and straight line segments (green), with 3 positions of the single light source (red spot). The purple crosses are the foci of the larger arcs. Lit and unlit regions are shown in yellow and grey respectively.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
is called the real projective line, which is topologically equivalent to a circle. R P 2 {\displaystyle \mathbb {RP} ^{2}} is called the real projective plane . This space cannot be embedded in R 3 {\displaystyle \mathbb {R} ^{3}} .
A 2016 Science paper reports that the trapezoid rule was in use in Babylon before 50 BCE for integrating the velocity of Jupiter along the ecliptic. [1]In 1994, a paper titled "A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves" was published, only to be met with widespread criticism for rediscovering the Trapezoidal Rule and coining it ...
Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line (sometimes, a half-axis if it plays a distinct role, e.g., as part of a coordinate axis). It is a one-dimensional half-space. The point A is ...
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus