Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...
The reciprocal of ζ(3) (0.8319073725807... (sequence A088453 in the OEIS )) is the probability that any three positive integers , chosen at random, will be relatively prime , in the sense that as N approaches infinity, the probability that three positive integers less than N chosen uniformly at random will not share a common prime factor ...
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Asymptotically, at large index n, these numbers behave as [2] [17] [19] | G n | ∼ 1 n ln 2 n , n → ∞ . {\displaystyle {\big |}G_{n}{\big |}\sim {\frac {1}{n\ln ^{2}n}},\qquad n\to \infty .} More accurate description of G n at large n may be found in works of Van Veen, [ 18 ] Davis, [ 3 ] Coffey, [ 21 ] Nemes [ 6 ] and Blagouchine.
In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then