Search results
Results from the WOW.Com Content Network
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
The gated recurrent unit (GRU) simplifies the LSTM. [3] Compared to the LSTM, the GRU has just two gates: a reset gate and an update gate. GRU also merges the cell state and hidden state. The reset gate roughly corresponds to the forget gate, and the update gate roughly corresponds to the input gate. The output gate is removed. There are ...
Gated recurrent unit (GRU), introduced in 2014, was designed as a simplification of LSTM. They are used in the full form and several further simplified variants. [59] [60] They have fewer parameters than LSTM, as they lack an output gate. [61]
In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...
Similarly, another 130M-parameter model used gated recurrent units (GRU) instead of LSTM. [22] Later research showed that GRUs are neither better nor worse than LSTMs for seq2seq. [24] [25] These early seq2seq models had no attention mechanism, and the state vector is accessible only after the last word of the source text was processed ...
For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state.
The standard LSTM architecture was introduced in 2000 by Felix Gers, Schmidhuber, and Fred Cummins. [20] Today's "vanilla LSTM" using backpropagation through time was published with his student Alex Graves in 2005, [21] [22] and its connectionist temporal classification (CTC) training algorithm [23] in 2006. CTC was applied to end-to-end speech ...
He and Schmidhuber later designed the LSTM architecture to solve this problem, [4] [21] which has a "cell state" that can function as a generalized residual connection. The highway network (2015) [22] [23] applied the idea of an LSTM unfolded in time to feedforward neural networks, resulting in the highway network. ResNet is equivalent to an ...