enow.com Web Search

  1. Ad

    related to: 1 dimensional lattice problems physics experiment solution guide 6th

Search results

  1. Results from the WOW.Com Content Network
  2. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    In some cases, the Schrödinger equation can be solved analytically on a one-dimensional lattice of finite length [6] [7] using the theory of periodic differential equations. [8] The length of the lattice is assumed to be L = N a {\displaystyle L=Na} , where a {\displaystyle a} is the potential period and the number of periods N {\displaystyle ...

  3. Bethe ansatz - Wikipedia

    en.wikipedia.org/wiki/Bethe_ansatz

    In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model. [1]

  4. Anderson localization - Wikipedia

    en.wikipedia.org/wiki/Anderson_localization

    In condensed matter physics, Anderson localization (also known as strong localization) [1] is the absence of diffusion of waves in a disordered medium. This phenomenon is named after the American physicist P. W. Anderson, who was the first to suggest that electron localization is possible in a lattice potential, provided that the degree of randomness (disorder) in the lattice is sufficiently ...

  5. Toda lattice - Wikipedia

    en.wikipedia.org/wiki/Toda_lattice

    The Toda lattice, introduced by Morikazu Toda , is a simple model for a one-dimensional crystal in solid state physics. It is famous because it is one of the earliest examples of a non-linear completely integrable system. It is given by a chain of particles with nearest neighbor interaction, described by the Hamiltonian

  6. Lattice model (physics) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(physics)

    Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory.

  7. Su–Schrieffer–Heeger model - Wikipedia

    en.wikipedia.org/wiki/Su–Schrieffer–Heeger_model

    In condensed matter physics, the Su–Schrieffer–Heeger (SSH) model or SSH chain is a one-dimensional lattice model that presents topological features. [1] It was devised by Wu-Pei Su, John Robert Schrieffer, and Alan J. Heeger in 1979, to describe the increase of electrical conductivity of polyacetylene polymer chain when doped, based on the existence of solitonic defects.

  8. Quantum Heisenberg model - Wikipedia

    en.wikipedia.org/wiki/Quantum_Heisenberg_model

    The spin 1/2 Heisenberg model in one dimension may be solved exactly using the Bethe ansatz. [1] In the algebraic formulation, these are related to particular quantum affine algebras and elliptic quantum groups in the XXZ and XYZ cases respectively. [2] Other approaches do so without Bethe ansatz. [3]

  9. Thomson problem - Wikipedia

    en.wikipedia.org/wiki/Thomson_problem

    Geometric solutions of the Thomson problem for N = 4, 6, and 12 electrons are Platonic solids whose faces are all congruent equilateral triangles. Numerical solutions for N = 8 and 20 are not the regular convex polyhedral configurations of the remaining two Platonic solids, the cube and dodecahedron respectively.

  1. Ad

    related to: 1 dimensional lattice problems physics experiment solution guide 6th