Ad
related to: 1 dimensional lattice problems physics experiment solution guide 6thchegg.com has been visited by 100K+ users in the past month
- Understand a Topic
Clear up tough topics
Master your toughest subjects
- Try Chegg Study
Get study help fast! Get step by
step solutions or online tutoring.
- Textbook Solutions
Guided solutions and study help
on thousands of textbooks.
- Chegg® Study Pack
More Tools, Better Grades
Study Help for Your Classes
- Understand a Topic
Search results
Results from the WOW.Com Content Network
In some cases, the Schrödinger equation can be solved analytically on a one-dimensional lattice of finite length [6] [7] using the theory of periodic differential equations. [8] The length of the lattice is assumed to be L = N a {\displaystyle L=Na} , where a {\displaystyle a} is the potential period and the number of periods N {\displaystyle ...
In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model. [1]
In condensed matter physics, Anderson localization (also known as strong localization) [1] is the absence of diffusion of waves in a disordered medium. This phenomenon is named after the American physicist P. W. Anderson, who was the first to suggest that electron localization is possible in a lattice potential, provided that the degree of randomness (disorder) in the lattice is sufficiently ...
The Toda lattice, introduced by Morikazu Toda , is a simple model for a one-dimensional crystal in solid state physics. It is famous because it is one of the earliest examples of a non-linear completely integrable system. It is given by a chain of particles with nearest neighbor interaction, described by the Hamiltonian
Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory.
In condensed matter physics, the Su–Schrieffer–Heeger (SSH) model or SSH chain is a one-dimensional lattice model that presents topological features. [1] It was devised by Wu-Pei Su, John Robert Schrieffer, and Alan J. Heeger in 1979, to describe the increase of electrical conductivity of polyacetylene polymer chain when doped, based on the existence of solitonic defects.
The spin 1/2 Heisenberg model in one dimension may be solved exactly using the Bethe ansatz. [1] In the algebraic formulation, these are related to particular quantum affine algebras and elliptic quantum groups in the XXZ and XYZ cases respectively. [2] Other approaches do so without Bethe ansatz. [3]
Geometric solutions of the Thomson problem for N = 4, 6, and 12 electrons are Platonic solids whose faces are all congruent equilateral triangles. Numerical solutions for N = 8 and 20 are not the regular convex polyhedral configurations of the remaining two Platonic solids, the cube and dodecahedron respectively.
Ad
related to: 1 dimensional lattice problems physics experiment solution guide 6thchegg.com has been visited by 100K+ users in the past month