Search results
Results from the WOW.Com Content Network
a Calorimeter in CERN. In experimental particle physics, a calorimeter is a type of detector that measures the energy of particles. Particles enter the calorimeter and initiate a particle shower in which their energy is deposited in the calorimeter, collected, and measured. The energy may be measured in its entirety, requiring total containment ...
The calorimeter systems for high energy physics experiments usually consist of three main subsystems: electromagnetic calorimeter (ECAL) to detect electromagnetic showers produced by electrons (or positrons) and photons, hadronic calorimeter (HCAL) to measure hadron-induced showers, and muon tracker (or so-called tail catcher) to identify ...
The hadronic calorimeter works in much the same way except the hadronic calorimeter uses steel in place of lead. [9] Each calorimeter forms a wedge, which consists of both an electromagnetic calorimeter and a hadronic calorimeter. These wedges are about 2.4 m (8 ft) in length and are arranged around the solenoid. [29]
The extended barrel section of the hadronic calorimeter. The calorimeters [1] [2] [3] are situated outside the solenoidal magnet that surrounds the Inner Detector. Their purpose is to measure the energy from particles by absorbing it. There are two basic calorimeter systems: an inner electromagnetic calorimeter and an outer hadronic calorimeter ...
The innermost layer is a silicon-based tracker. Surrounding it is a scintillating crystal electromagnetic calorimeter , which is itself surrounded with a sampling calorimeter for hadrons. The tracker and the calorimetry are compact enough to fit inside the CMS solenoid , which generates a powerful magnetic field of 3.8 T .
The ATHENA calorimeter system is composed of electromagnetic and hadronic sections which cover the full azimuth angle and polar angle covering up to 2 degrees. The electromagnetic section is composed of a crystal calorimeter in the negative direction, a novel imaging calorimeter in the central region, and a sampling calorimeter in the forward ...
A calorimeter is a device which is used to measure and define the internal energy of a system. A thermodynamic reservoir is a system which is so large that its state parameters are not appreciably altered when it is brought into contact with the system of interest.
In the jargon of high energy physics, these devices are not called "calorimeters", since this term is already used for a different type of detector (see Calorimeter). Their use as particle detectors was proposed from the beginning of the 20th century, but the first regular, though pioneering, use was only in the 1980s because of the difficulty ...