Search results
Results from the WOW.Com Content Network
For a full list of editing commands, see Help:Wikitext; For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Nanmean (mean ignoring NaN values, also known as "nil" or "null") Stddev; Formally, an aggregate function takes as input a set, a multiset (bag), or a list from some input domain I and outputs an element of an output domain O. [1] The input and output domains may be the same, such as for SUM, or may be different, such as for COUNT.
One of the most common examples of an algebraic data type is the singly linked list. A list type is a sum type with two variants, Nil for an empty list and Cons x xs for the combination of a new element x with a list xs to create a new list. Here is an example of how a singly linked list would be declared in Haskell:
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.