Search results
Results from the WOW.Com Content Network
The first paper that has "non-Hermitian quantum mechanics" in the title was published in 1996 [1] by Naomichi Hatano and David R. Nelson. The authors mapped a classical statistical model of flux-line pinning by columnar defects in high-T c superconductors to a quantum model by means of an inverse path-integral mapping and ended up with a non-Hermitian Hamiltonian with an imaginary vector ...
For non-Hermitian quantum systems with PT symmetry, fidelity can be used to analyze whether exceptional points are of higher-order. Many numerical methods such as the Lanczos algorithm , Density Matrix Renormalization Group (DMRG), and other tensor network algorithms are relatively easy to calculate only for the ground state, but have many ...
For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular ...
In quantum electrodynamics, the local symmetry group is U(1) and is abelian. In quantum chromodynamics, the local symmetry group is SU(3) and is non-abelian. The electromagnetic interaction is mediated by photons, which have no electric charge. The electromagnetic tensor has an electromagnetic four-potential field possessing gauge symmetry.
where j is the third basis quaternion in the ordered listing (1, i, j, k). In this case, Aut(φ) = O ∗ (2n) may be realized, using the complex matrix encoding of above, as a subgroup of O(2n, C) which preserves a non-degenerate complex skew-hermitian form of signature (n, n). [20] From the normal form one sees that in quaternionic notation
For a field F, the generalized special unitary group over F, SU(p, q; F), is the group of all linear transformations of determinant 1 of a vector space of rank n = p + q over F which leave invariant a nondegenerate, Hermitian form of signature (p, q). This group is often referred to as the special unitary group of signature p q over F.
The Lorentz group O(n, 1) is also the isometry group of n-dimensional de Sitter space dS n, which may be realized as the homogeneous space O(n, 1) / O(n − 1, 1). In particular O(4, 1) is the isometry group of the de Sitter universe dS 4, a cosmological model.
For example, 4 1 /a means that the crystallographic axis in question contains both a 4 1 screw axis as well as a glide plane along a. In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry ...