Ad
related to: lattice group definition science experiment biology worksheet 4education.com has been visited by 100K+ users in the past month
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Educational Songs
Search results
Results from the WOW.Com Content Network
Lattice models in biophysics represent a class of statistical-mechanical models which consider a biological macromacromolecule (such as DNA, protein, actin, etc.) as a lattice of units, each unit being in different states or conformations.
Lattice (group), a repeating arrangement of points Lattice (discrete subgroup), a discrete subgroup of a topological group whose quotient carries an invariant finite Borel measure; Lattice (module), a module over a ring that is embedded in a vector space over a field; Lattice graph, a graph that can be drawn within a repeating arrangement of points
Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
For example, 2 1 is a 180° (twofold) rotation followed by a translation of 1 / 2 of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of 1 / 3 of the lattice vector. The possible screw axes are: 2 1, 3 1, 3 2, 4 1, 4 2, 4 3, 6 1, 6 2, 6 3, 6 4, and 6 5.
a lattice (group), a discrete subgroup of R n and its generalizations a lattice ordered group , a group that with a partial ordering that is a lattice order Topics referred to by the same term
A primitive cell is a unit cell that contains exactly one lattice point. For unit cells generally, lattice points that are shared by n cells are counted as 1 / n of the lattice points contained in each of those cells; so for example a primitive unit cell in three dimensions which has lattice points only at its eight vertices is considered to contain 1 / 8 of each of them. [3]
Ad
related to: lattice group definition science experiment biology worksheet 4education.com has been visited by 100K+ users in the past month