enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  3. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    In spherical trigonometry, the law of cosines (also called the cosine rule for sides[1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines. Given a unit sphere, a "spherical triangle" on the surface of the sphere is ...

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Law of cosines. Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite ...

  5. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    Trigonometry. In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of ...

  6. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    The following are trigonometric quantities generally associated to a general tetrahedron: The 6 edge lengths - associated to the six edges of the tetrahedron. The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of ...

  7. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    In an acute triangle, the sum of the circumradius R and the inradius r is less than half the sum of the shortest sides a and b: [4]: p.105, #2690. while the reverse inequality holds for an obtuse triangle. For an acute triangle with medians ma , mb , and mc and circumradius R, we have [4]: p.26, #954.

  8. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    Fourier. v. t. e. In trigonometry, the law of tangents or tangent rule[1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides.

  9. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1⁄4 turn or 90 degrees). The side opposite to the right angle is called the hypotenuse (side in the figure). The sides adjacent to the right angle are called ...