Search results
Results from the WOW.Com Content Network
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model (can be used for multi class classification as well) at varying threshold values. The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR) at each threshold setting.
An image of different ROC curves is shown in Figure 1. ROC curves provide a simple visual method for one to determine the boundary limit (or the separation threshold) of a biomarker or a combination of biomarkers for the optimal combination of sensitivity and specificity. The AUC (area under the curve) of the ROC curve reflects the overall ...
The Partial Area Under the ROC Curve (pAUC) is a metric for the performance of binary classifier. It is computed based on the receiver operating characteristic (ROC) curve that illustrates the diagnostic ability of a given binary classifier system as its discrimination threshold is varied. The ROC curve is created by plotting the true positive ...
Youden's index is often used in conjunction with receiver operating characteristic (ROC) analysis. [3] The index is defined for all points of an ROC curve, and the maximum value of the index may be used as a criterion for selecting the optimum cut-off point when a diagnostic test gives a numeric rather than a dichotomous result.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
It is common to report the area under the curve (AUC) to summarize a TOC or ROC curve. However, condensing diagnostic ability into a single number fails to appreciate the shape of the curve. The following three TOC curves are TOC curves that have an AUC of 0.75 but have different shapes. [citation needed]
The U statistic is related to the area under the receiver operating characteristic curve : [8] A U C 1 = U 1 n 1 n 2 {\displaystyle \mathrm {AUC} _{1}={U_{1} \over n_{1}n_{2}}} Note that this is the same definition as the common language effect size , i.e. the probability that a classifier will rank a randomly chosen instance from the first ...
Several statistics can be used to quantify the quality of such models: area under the receiver operating characteristic (ROC) curve, Goodman and Kruskal's gamma, Kendall's tau (Tau-a), Somers’ D, etc. Somers’ D is probably the most widely used of the available ordinal association statistics. [3]