Search results
Results from the WOW.Com Content Network
In application to classification, the observable X is frequently a continuous variable, the target Y is generally a discrete variable consisting of a finite set of labels, and the conditional probability () can also be interpreted as a (non-deterministic) target function:, considering X as inputs and Y as outputs.
In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.
The utility of the measure-theoretic treatment of probability is that it unifies the discrete and the continuous cases, and makes the difference a question of which measure is used. Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two.
The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input. Depending on the type of output, supervised learning problems are either problems of regression or problems of classification. If the output takes a continuous ...
In statistics and machine learning, discretization refers to the process of converting continuous features or variables to discretized or nominal features. This can be useful when creating probability mass functions.
The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result. Learning automata is a learning scheme with a rigorous proof of convergence. [20] In learning automata theory, a stochastic automaton consists of:
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).
In the case of discrete inputs (indicator or frequency features for discrete events), naive Bayes classifiers form a generative-discriminative pair with multinomial logistic regression classifiers: each naive Bayes classifier can be considered a way of fitting a probability model that optimizes the joint likelihood (,), while logistic ...